CHAPTER

Hyperbola

• Standard equation of the hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where $b^2 = a^2 (e^2 - 1)$

or $a^2 e^2 = a^2 + b^2$ *i.e.* $e^2 = 1 + \frac{b^2}{a^2} = 1 + \left(\frac{\text{Conjugate Axis}}{\text{Transverse Axis}}\right)^2$

(a) Foci:

 $S \equiv (ae, 0)$ & $S' \equiv (-ae, 0)$.

(b) Equations of Directrices:

$$x = \frac{a}{e} \& \quad x = -\frac{a}{e}.$$

 $A \equiv (a, 0) \& A' \equiv (-a, 0).$

(d) Latus Rectum:

(*i*) Equation:
$$x = \pm ae$$

(*ii*) Length =
$$\frac{2b^2}{a} = \frac{\text{(Conjugate Axis)}}{\text{(Transverse Axis)}} = 2a (e^2 - 1)$$

= 2e(distance from focus to directrix)

(iii) Ends: $\left(ae, \frac{b^2}{a}\right), \left(ae, \frac{-b^2}{a}\right); \left(-ae, \frac{b^2}{a}\right), \left(-ae, \frac{-b^2}{a}\right)$

(e) Focal Property:

The difference of the focal distances of any point on the hyperbola is constant and equal to transverse axis *i.e.* ||PS| - |PS|||PS'| = 2a. The distance SS' = focal length.

(f) Focal Distance:

Distance of any point P(x, y) on hyperbola from foci PS =ex - a & PS' = ex + a.

Conjugate Hyperbola:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 & $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are

conjugate hyperbolas of each.

Auxillary Circle: $x^2 + y^2 = a^2$.

Parametric Representation: $x = a \sec \theta \& y = b \tan \theta$

Position of A point 'P' w.r.t. A Hyperbola:

$$S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1 > = \text{ or } < 0 \text{ according as the point } (x_1, y_1) \text{ lines}$$

inside, on

or outside the curve.

Tangents

(*i*) Slope Form: $v = m \times \pm \sqrt{a^2 m^2 - b^2}$

- (*ii*) **Point Form:** at the point (x_1, y_1) is $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$. (*iii*) **Parametric Form:** $\frac{x \sec \theta}{a} \frac{y \tan \theta}{2} = 1$.
 - * Normal to The Hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$: (a) Point form: Equation (1)
- (a) Point form: Equation of the normal to the given hyperbola at the point P(x₁, y₁) on it is $\frac{a^2x}{a^2} + \frac{b^2y}{a^2} = a^2 + b^2 = a^2e^2$.

(b) Slope form: The equation of normal of slope *m* to the given
$$m(a^2 + b^2) = 6$$

hyperbola is
$$y = mx \mp \frac{m(u+b')}{\sqrt{(a^2 - m^2b^2)}}$$
 foot of normal are

$$\left(\pm\frac{a^2}{\sqrt{(a^2-m^2b^2)}},\mp\frac{mb^2}{\sqrt{(a^2-m^2b^2)}}\right)$$

(c) Parametric form: The equation of the normal at the point P (a sec θ , b tan θ) to the given hyperbola is $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2 = a^2e^2.$

Director Circle

Equation to the director circle is: $x^2 + y^2 = a^2 - b^2$.

Chord of Contact

If *PA* and *PB* be the tangents from point $P(x_1, y_1)$ to the Hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then the equation of the chord of contact AB is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$ or T = 0 at (x_1, y_1) .

Equation of Chord with mid Point (x₁, y₁)

The equation of the chord of the ellipse $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, whose mid-

point be (x_1, y_1) is $T = S_1$ where T

$$=\frac{xx_1}{a^2}-\frac{yy_1}{b^2}-1, S_1=\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1$$

i.e.
$$\left(\frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1\right) = \left(\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1\right).$$

Asymptotes

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

Reflection property of the hyperbola: An incoming light ray aimed towards one focus is reflected from the outer surface of the hyperbola towards the other focus.

Rectangular or Equilateral Hyperbola: $xy = c^2$, eccentricity is $\sqrt{2}$.

Vertices: $(\pm c \pm c)$; Focii : $(\pm \sqrt{2}c, \pm \sqrt{2}c)$. Directrices : $x + y = \pm \sqrt{2}c$.

Latus Rectum (*l*): $= l = 2\sqrt{2} c = T.A. = C.A.$ Parametric equation x = ct, y = c/t, $t \in R - \{0\}$

Equation of the tangent at $P(x_1, y_1)$ is $\frac{x}{x_1} + \frac{y}{y_1} = 2$ & at P(t) is $\frac{x}{t} + ty = 2c$. Equation of the normal at P(t) is $xt^3 - yt = c(t^4 - 1)$. Chord with a given middle point as (h, k) is kx + hy = 2hk.

